LLFIO
v2.00
|
A handle to something capable of scatter-gather i/o and which can exclude other concurrent users. Models SharedMutex
, though note that the locks are per-handle, not per-thread.
More...
#include "lockable_byte_io_handle.hpp"
Classes | |
class | extent_guard |
EXTENSION: RAII holder a locked extent of bytes in a file. More... | |
Public Types | |
using | path_type = byte_io_handle::path_type |
using | extent_type = byte_io_handle::extent_type |
using | size_type = byte_io_handle::size_type |
using | mode = byte_io_handle::mode |
using | creation = byte_io_handle::creation |
using | caching = byte_io_handle::caching |
using | flag = byte_io_handle::flag |
using | buffer_type = byte_io_handle::buffer_type |
using | const_buffer_type = byte_io_handle::const_buffer_type |
using | buffers_type = byte_io_handle::buffers_type |
using | const_buffers_type = byte_io_handle::const_buffers_type |
template<class T > | |
using | io_request = byte_io_handle::io_request< T > |
template<class T > | |
using | io_result = byte_io_handle::io_result< T > |
using | barrier_kind = byte_io_multiplexer::barrier_kind |
using | registered_buffer_type = byte_io_multiplexer::registered_buffer_type |
template<class T > | |
using | awaitable = byte_io_multiplexer::awaitable< T > |
Public Member Functions | |
constexpr | lockable_byte_io_handle () |
Default constructor. | |
constexpr | lockable_byte_io_handle (native_handle_type h, flag flags, byte_io_multiplexer *ctx) |
Construct a handle from a supplied native handle. | |
constexpr | lockable_byte_io_handle (handle &&o, byte_io_multiplexer *ctx) noexcept |
Explicit conversion from handle permitted. | |
constexpr | lockable_byte_io_handle (byte_io_handle &&o) noexcept |
Explicit conversion from byte_io_handle permitted. | |
lockable_byte_io_handle (lockable_byte_io_handle &&)=default | |
Move construction permitted. | |
lockable_byte_io_handle (const lockable_byte_io_handle &)=delete | |
No copy construction (use clone() ) | |
lockable_byte_io_handle & | operator= (lockable_byte_io_handle &&)=default |
Move assignment permitted. | |
lockable_byte_io_handle & | operator= (const lockable_byte_io_handle &)=delete |
No copy assignment. | |
virtual result< void > | lock_file () noexcept |
Locks the inode referred to by the open handle for exclusive access. More... | |
virtual bool | try_lock_file () noexcept |
Tries to lock the inode referred to by the open handle for exclusive access, returning false if lock is currently unavailable. More... | |
virtual void | unlock_file () noexcept |
Unlocks a previously acquired exclusive lock. | |
virtual result< void > | lock_file_shared () noexcept |
Locks the inode referred to by the open handle for shared access. More... | |
virtual bool | try_lock_file_shared () noexcept |
Tries to lock the inode referred to by the open handle for shared access, returning false if lock is currently unavailable. More... | |
virtual void | unlock_file_shared () noexcept |
Unlocks a previously acquired shared lock. | |
virtual result< extent_guard > | lock_file_range (extent_type offset, extent_type bytes, lock_kind kind, deadline d=deadline()) noexcept |
EXTENSION: Tries to lock the range of bytes specified for shared or exclusive access. Note that this may, or MAY NOT, observe whole file locks placed with lock() , lock_shared() etc. More... | |
result< extent_guard > | lock_file_range (io_request< buffers_type > reqs, deadline d=deadline()) noexcept |
result< extent_guard > | lock_file_range (io_request< const_buffers_type > reqs, deadline d=deadline()) noexcept |
template<class... Args> | |
bool | try_lock_file_range (Args &&... args) noexcept |
template<class... Args, class Rep , class Period > | |
bool | try_lock_file_range_for (Args &&... args, const std::chrono::duration< Rep, Period > &duration) noexcept |
template<class... Args, class Clock , class Duration > | |
bool | try_lock_file_range_until (Args &&... args, const std::chrono::time_point< Clock, Duration > &timeout) noexcept |
virtual void | unlock_file_range (extent_type offset, extent_type bytes) noexcept |
EXTENSION: Unlocks a byte range previously locked. More... | |
virtual result< void > | close () noexcept override |
Immediately close the native handle type managed by this handle. | |
byte_io_multiplexer * | multiplexer () const noexcept |
The i/o multiplexer this handle will use to multiplex i/o. If this returns null, then this handle has not been registered with an i/o multiplexer yet. | |
virtual result< void > | set_multiplexer (byte_io_multiplexer *c=this_thread::multiplexer()) noexcept |
Sets the i/o multiplexer this handle will use to implement read() , write() and barrier() . More... | |
size_t | max_buffers () const noexcept |
The maximum number of buffers which a single read or write syscall can (atomically) process at a time for this specific open handle. On POSIX, this is known as IOV_MAX . Preferentially uses any i/o multiplexer set over the virtually overridable per-class implementation. More... | |
result< registered_buffer_type > | allocate_registered_buffer (size_t &bytes) noexcept |
Request the allocation of a new registered i/o buffer with the system suitable for maximum performance i/o, preferentially using any i/o multiplexer set over the virtually overridable per-class implementation. More... | |
io_result< buffers_type > | read (io_request< buffers_type > reqs, deadline d=deadline()) noexcept |
Read data from the open handle, preferentially using any i/o multiplexer set over the virtually overridable per-class implementation. More... | |
io_result< buffers_type > | read (registered_buffer_type base, io_request< buffers_type > reqs, deadline d=deadline()) noexcept |
io_result< size_type > | read (extent_type offset, std::initializer_list< buffer_type > lst, deadline d=deadline()) noexcept |
template<class... Args> | |
bool | try_read (Args &&... args) noexcept |
template<class... Args, class Rep , class Period > | |
bool | try_read_for (Args &&... args, const std::chrono::duration< Rep, Period > &duration) noexcept |
template<class... Args, class Clock , class Duration > | |
bool | try_read_until (Args &&... args, const std::chrono::time_point< Clock, Duration > &timeout) noexcept |
io_result< const_buffers_type > | write (io_request< const_buffers_type > reqs, deadline d=deadline()) noexcept |
Write data to the open handle, preferentially using any i/o multiplexer set over the virtually overridable per-class implementation. More... | |
io_result< const_buffers_type > | write (registered_buffer_type base, io_request< const_buffers_type > reqs, deadline d=deadline()) noexcept |
io_result< size_type > | write (extent_type offset, std::initializer_list< const_buffer_type > lst, deadline d=deadline()) noexcept |
template<class... Args> | |
bool | try_write (Args &&... args) noexcept |
template<class... Args, class Rep , class Period > | |
bool | try_write_for (Args &&... args, const std::chrono::duration< Rep, Period > &duration) noexcept |
template<class... Args, class Clock , class Duration > | |
bool | try_write_until (Args &&... args, const std::chrono::time_point< Clock, Duration > &timeout) noexcept |
virtual io_result< const_buffers_type > | barrier (io_request< const_buffers_type > reqs=io_request< const_buffers_type >(), barrier_kind kind=barrier_kind::nowait_data_only, deadline d=deadline()) noexcept |
Issue a write reordering barrier such that writes preceding the barrier will reach storage before writes after this barrier, preferentially using any i/o multiplexer set over the virtually overridable per-class implementation. More... | |
io_result< const_buffers_type > | barrier (barrier_kind kind, deadline d=deadline()) noexcept |
template<class... Args> | |
bool | try_barrier (Args &&... args) noexcept |
template<class... Args, class Rep , class Period > | |
bool | try_barrier_for (Args &&... args, const std::chrono::duration< Rep, Period > &duration) noexcept |
template<class... Args, class Clock , class Duration > | |
bool | try_barrier_until (Args &&... args, const std::chrono::time_point< Clock, Duration > &timeout) noexcept |
awaitable< io_result< buffers_type > > | co_read (io_request< buffers_type > reqs, deadline d=deadline()) noexcept |
A coroutinised equivalent to .read() which suspends the coroutine until the i/o finishes. Blocks execution i.e is equivalent to .read() if no i/o multiplexer has been set on this handle! More... | |
awaitable< io_result< buffers_type > > | co_read (registered_buffer_type base, io_request< buffers_type > reqs, deadline d=deadline()) noexcept |
awaitable< io_result< const_buffers_type > > | co_write (io_request< const_buffers_type > reqs, deadline d=deadline()) noexcept |
A coroutinised equivalent to .write() which suspends the coroutine until the i/o finishes. Blocks execution i.e is equivalent to .write() if no i/o multiplexer has been set on this handle! More... | |
awaitable< io_result< const_buffers_type > > | co_write (registered_buffer_type base, io_request< const_buffers_type > reqs, deadline d=deadline()) noexcept |
awaitable< io_result< const_buffers_type > > | co_barrier (io_request< const_buffers_type > reqs=io_request< const_buffers_type >(), barrier_kind kind=barrier_kind::nowait_data_only, deadline d=deadline()) noexcept |
A coroutinised equivalent to .barrier() which suspends the coroutine until the i/o finishes. Blocks execution i.e is equivalent to .barrier() if no i/o multiplexer has been set on this handle! More... | |
flag | flags () const noexcept |
The flags this handle was opened with. | |
QUICKCPPLIB_BITFIELD_BEGIN_T (flag, uint16_t) | |
Bitwise flags which can be specified. More... | |
void | swap (handle &o) noexcept |
Swap with another instance. | |
virtual result< path_type > | current_path () const noexcept |
result< handle > | clone () const noexcept |
virtual native_handle_type | release () noexcept |
Release the native handle type managed by this handle. | |
bool | is_valid () const noexcept |
True if the handle is valid (and usually open) | |
bool | is_readable () const noexcept |
True if the handle is readable. | |
bool | is_writable () const noexcept |
True if the handle is writable. | |
bool | is_append_only () const noexcept |
True if the handle is append only. | |
virtual result< void > | set_append_only (bool enable) noexcept |
EXTENSION: Changes whether this handle is append only or not. More... | |
bool | is_multiplexable () const noexcept |
True if multiplexable. | |
bool | is_nonblocking () const noexcept |
True if nonblocking. | |
bool | is_seekable () const noexcept |
True if seekable. | |
bool | requires_aligned_io () const noexcept |
True if requires aligned i/o. | |
bool | is_kernel_handle () const noexcept |
True if native_handle() is a valid kernel handle. | |
bool | is_regular () const noexcept |
True if a regular file or device. | |
bool | is_directory () const noexcept |
True if a directory. | |
bool | is_symlink () const noexcept |
True if a symlink. | |
bool | is_pipe () const noexcept |
True if a pipe. | |
bool | is_socket () const noexcept |
True if a socket. | |
bool | is_multiplexer () const noexcept |
True if a multiplexer like BSD kqueues, Linux epoll or Windows IOCP. | |
bool | is_process () const noexcept |
True if a process. | |
bool | is_section () const noexcept |
True if a memory section. | |
bool | is_allocation () const noexcept |
True if a memory allocation. | |
bool | is_path () const noexcept |
True if a path or a directory. | |
bool | is_tls_socket () const noexcept |
True if a TLS socket. | |
bool | is_http_socket () const noexcept |
True if a HTTP socket. | |
caching | kernel_caching () const noexcept |
Kernel cache strategy used by this handle. | |
bool | are_reads_from_cache () const noexcept |
True if the handle uses the kernel page cache for reads. | |
bool | are_writes_durable () const noexcept |
True if writes are safely on storage on completion. | |
bool | are_safety_barriers_issued () const noexcept |
True if issuing safety fsyncs is on. | |
native_handle_type | native_handle () const noexcept |
The native handle used by this handle. | |
Protected Member Functions | |
virtual size_t | _do_max_buffers () const noexcept |
The virtualised implementation of max_buffers() used if no multiplexer has been set. | |
virtual result< registered_buffer_type > | _do_allocate_registered_buffer (size_t &bytes) noexcept |
The virtualised implementation of allocate_registered_buffer() used if no multiplexer has been set. | |
virtual io_result< buffers_type > | _do_read (io_request< buffers_type > reqs, deadline d) noexcept |
The virtualised implementation of read() used if no multiplexer has been set. | |
virtual io_result< buffers_type > | _do_read (registered_buffer_type base, io_request< buffers_type > reqs, deadline d) noexcept |
The virtualised implementation of read() used if no multiplexer has been set. | |
virtual io_result< const_buffers_type > | _do_write (io_request< const_buffers_type > reqs, deadline d) noexcept |
The virtualised implementation of write() used if no multiplexer has been set. | |
virtual io_result< const_buffers_type > | _do_write (registered_buffer_type base, io_request< const_buffers_type > reqs, deadline d) noexcept |
The virtualised implementation of write() used if no multiplexer has been set. | |
virtual io_result< const_buffers_type > | _do_barrier (io_request< const_buffers_type > reqs, barrier_kind kind, deadline d) noexcept |
The virtualised implementation of barrier() used if no multiplexer has been set. | |
io_result< buffers_type > | _do_multiplexer_read (registered_buffer_type &&base, io_request< buffers_type > reqs, deadline d) noexcept |
io_result< const_buffers_type > | _do_multiplexer_write (registered_buffer_type &&base, io_request< const_buffers_type > reqs, deadline d) noexcept |
io_result< const_buffers_type > | _do_multiplexer_barrier (registered_buffer_type &&base, io_request< const_buffers_type > reqs, barrier_kind kind, deadline d) noexcept |
Protected Attributes | |
byte_io_multiplexer * | _ctx {nullptr} |
union { | |
native_handle_type _v | |
struct { | |
intptr_t _padding0_ | |
uint32_t _padding1_ | |
flag flags | |
uint16_t _padding2_ | |
} _ | |
}; | |
A handle to something capable of scatter-gather i/o and which can exclude other concurrent users. Models SharedMutex
, though note that the locks are per-handle, not per-thread.
(2^64-1)
as the closest available emulation of advisory whole-file locking. This causes byte range locks to work (probably) independently of these locks.
|
inlinenoexceptinherited |
Request the allocation of a new registered i/o buffer with the system suitable for maximum performance i/o, preferentially using any i/o multiplexer set over the virtually overridable per-class implementation.
bytes | The size of the i/o buffer requested. This may be rounded (considerably) upwards, you should always use the value returned. |
Some i/o multiplexer implementations have the ability to allocate i/o buffers in special memory shared between the i/o hardware and user space processes. Using registered i/o buffers can entirely eliminate all kernel transitions and memory copying during i/o, and can saturate very high end hardware from a single kernel thread.
If no multiplexer is set, the default implementation uses map_handle
to allocate raw memory pages from the OS kernel. If the requested buffer size is a multiple of one of the larger page sizes from utils::page_sizes()
, an attempt to satisfy the request using the larger page size will be attempted first.
|
inlinevirtualnoexceptinherited |
Issue a write reordering barrier such that writes preceding the barrier will reach storage before writes after this barrier, preferentially using any i/o multiplexer set over the virtually overridable per-class implementation.
caching::reads
which means that all writes form a strict sequential order not completing until acknowledged by the storage device. Filing system can and do use different algorithms to give much better performance with caching::reads
, some (e.g. ZFS) spectacularly better.reqs | A scatter-gather and offset request for what range to barrier. May be ignored on some platforms which always write barrier the entire file. Supplying a default initialised reqs write barriers the entire file. |
kind | Which kind of write reordering barrier to perform. |
d | An optional deadline by which the i/o must complete, else it is cancelled. Note function may return significantly after this deadline if the i/o takes long to cancel. |
|
inlinenoexceptinherited |
Clone this handle (copy constructor is disabled to avoid accidental copying)
|
inlinenoexceptinherited |
A coroutinised equivalent to .barrier()
which suspends the coroutine until the i/o finishes. Blocks execution i.e is equivalent to .barrier()
if no i/o multiplexer has been set on this handle!
The awaitable returned is eager i.e. it immediately begins the i/o. If the i/o completes and finishes immediately, no coroutine suspension occurs.
|
inlinenoexceptinherited |
A coroutinised equivalent to .read()
which suspends the coroutine until the i/o finishes. Blocks execution i.e is equivalent to .read()
if no i/o multiplexer has been set on this handle!
The awaitable returned is eager i.e. it immediately begins the i/o. If the i/o completes and finishes immediately, no coroutine suspension occurs.
|
inlinenoexceptinherited |
A coroutinised equivalent to .write()
which suspends the coroutine until the i/o finishes. Blocks execution i.e is equivalent to .write()
if no i/o multiplexer has been set on this handle!
The awaitable returned is eager i.e. it immediately begins the i/o. If the i/o completes and finishes immediately, no coroutine suspension occurs.
|
inlinevirtualnoexceptinherited |
Returns the current path of the open handle as said by the operating system. Note that you are NOT guaranteed that any path refreshed bears any resemblance to the original, some operating systems will return some different path which still reaches the same inode via some other route e.g. hardlinks, dereferenced symbolic links, etc. Windows and Linux correctly track changes to the specific path the handle was opened with, not getting confused by other hard links. MacOS nearly gets it right, but under some circumstances e.g. renaming may switch to a different hard link's path which is almost certainly a bug.
If LLFIO was not able to determine the current path for this open handle e.g. the inode has been unlinked, it returns an empty path. Be aware that FreeBSD can return an empty (deleted) path for file inodes no longer cached by the kernel path cache, LLFIO cannot detect the difference. FreeBSD will also return any path leading to the inode if it is hard linked. FreeBSD does implement path retrieval for directory inodes correctly however, and see algorithm::cached_parent_handle_adapter<T>
for a handle adapter which makes use of that.
On Linux if /proc
is not mounted, this call fails with an error. All APIs in LLFIO which require the use of current_path()
can be told to not use it e.g. flag::disable_safety_unlinks
. It is up to you to detect if current_path()
is not working, and to change how you call LLFIO appropriately.
On Windows, you will almost certainly get back a path of the form \!!\Device\HarddiskVolume10\Users\ned\...
. See path_view
for what all the path prefix sequences mean, but to summarise the \!!\
prefix is LLFIO-only and will not be accepted by other Windows APIs. Pass LLFIO derived paths through the function to_win32_path()
to Win32-ise them. This function is also available on Linux where it does nothing, so you can use it in portable code.
path_handle
to fix a base location on the file system and work from that anchor instead!algorithm::cached_parent_handle_adapter<T>
which overrides this with an implementation based on retrieving the current path of a cached handle to the parent directory. On platforms with instability or failure to retrieve the correct current path for regular files, the cached parent handle adapter works around the problem by taking advantage of directory inodes not having the same instability problems on any platform. Reimplemented in llfio_v2_xxx::symlink_handle, and llfio_v2_xxx::process_handle.
|
inlinevirtualnoexcept |
Locks the inode referred to by the open handle for exclusive access.
Note that this may, or may not, interact with the byte range lock extensions. See unique_file_lock
for a RAII locker.
|
inlinevirtualnoexcept |
EXTENSION: Tries to lock the range of bytes specified for shared or exclusive access. Note that this may, or MAY NOT, observe whole file locks placed with lock()
, lock_shared()
etc.
Be aware this passes through the same semantics as the underlying OS call, including any POSIX insanity present on your platform:
flag::byte_lock_insanity
will be set in flags() after the first call to this function.You almost cetainly should use your choice of an algorithm::shared_fs_mutex::*
instead of this as those are more portable and performant, or use the SharedMutex
modelling member functions which lock the whole inode for exclusive or shared access.
extent_guard
after creating a new one over the same byte range, otherwise the old extent_guard
's destructor will simply unlock the range entirely. On Windows however upgrade/downgrade locks overlay, so on that platform you must not release the old extent_guard
. Look into algorithm::shared_fs_mutex::safe_byte_ranges
for a portable solution.offset | The offset to lock. Note that on POSIX the top bit is always cleared before use as POSIX uses signed transport for offsets. If you want an advisory rather than mandatory lock on Windows, one technique is to force top bit set so the region you lock is not the one you will i/o - obviously this reduces maximum file size to (2^63)-1. |
bytes | The number of bytes to lock. Setting this and the offset to zero causes the whole file to be locked. |
kind | Whether the lock is to be shared or exclusive. |
d | An optional deadline by which the lock must complete, else it is cancelled. |
Reimplemented in llfio_v2_xxx::fast_random_file_handle.
|
inlinevirtualnoexcept |
Locks the inode referred to by the open handle for shared access.
Note that this may, or may not, interact with the byte range lock extensions. See unique_file_lock
for a RAII locker.
|
inlinenoexceptinherited |
The maximum number of buffers which a single read or write syscall can (atomically) process at a time for this specific open handle. On POSIX, this is known as IOV_MAX
. Preferentially uses any i/o multiplexer set over the virtually overridable per-class implementation.
Note that the actual number of buffers accepted for a read or a write may be significantly lower than this system-defined limit, depending on available resources. The read()
or write()
call will return the buffers accepted at the time of invoking the syscall.
Note also that some OSs will error out if you supply more than this limit to read()
or write()
, but other OSs do not. Some OSs guarantee that each i/o syscall has effects atomically visible or not to other i/o, other OSs do not.
OS X does not implement scatter-gather file i/o syscalls. Thus this function will always return 1
in that situation.
Microsoft Windows may implement scatter-gather i/o under certain handle configurations. Most of the time for non-socket handles this function will return 1
.
For handles which implement i/o entirely in user space, and thus syscalls are not involved, this function will return 0
.
|
inlineinherited |
Bitwise flags which can be specified.
< No flags
Unlinks the file on handle close. On POSIX, this simply unlinks whatever is pointed to by path()
upon the call of close()
if and only if the inode matches. On Windows, if you are on Windows 10 1709 or later, exactly the same thing occurs. If on previous editions of Windows, the file entry does not disappears but becomes unavailable for anyone else to open with an errc::resource_unavailable_try_again
error return. Because this is confusing, unless the win_disable_unlink_emulation
flag is also specified, this POSIX behaviour is somewhat emulated by LLFIO on older Windows by renaming the file to a random name on close()
causing it to appear to have been unlinked immediately.
Some kernel caching modes have unhelpfully inconsistent behaviours in getting your data onto storage, so by default unless this flag is specified LLFIO adds extra fsyncs to the following operations for the caching modes specified below: truncation of file length either explicitly or during file open. closing of the handle either explicitly or in the destructor.
Additionally on Linux only to prevent loss of file metadata: On the parent directory whenever a file might have been created. On the parent directory on file close.
This only occurs for these kernel caching modes: caching::none caching::reads caching::reads_and_metadata caching::safety_barriers
file_handle::unlink()
could accidentally delete the wrong file if someone has renamed the open file handle since the time it was opened. To prevent this occuring, where the OS doesn't provide race free unlink-by-open-handle we compare the inode of the path we are about to unlink with that of the open handle before unlinking.
Ask the OS to disable prefetching of data. This can improve random i/o performance.
Ask the OS to maximise prefetching of data, possibly prefetching the entire file into kernel cache. This can improve sequential i/o performance.
< See the documentation for unlink_on_first_close
Microsoft Windows NTFS, having been created in the late 1980s, did not originally implement extents-based storage and thus could only represent sparse files via efficient compression of intermediate zeros. With NTFS v3.0 (Microsoft Windows 2000), a proper extents-based on-storage representation was added, thus allowing only 64Kb extent chunks written to be stored irrespective of whatever the maximum file extent was set to.
For various historical reasons, extents-based storage is disabled by default in newly created files on NTFS, unlike in almost every other major filing system. You have to explicitly "opt in" to extents-based storage.
As extents-based storage is nearly cost free on NTFS, LLFIO by default opts in to extents-based storage for any empty file it creates. If you don't want this, you can specify this flag to prevent that happening.
Filesystems tend to be embarrassingly parallel for operations performed to different inodes. Where LLFIO performs i/o to multiple inodes at a time, it will use OpenMP or the Parallelism or Concurrency standard library extensions to usually complete the operation in constant rather than linear time. If you don't want this default, you can disable default using this flag.
Microsoft Windows NTFS has the option, when creating a directory, to set whether leafname lookup will be case sensitive. This is the only way of getting exact POSIX semantics on Windows without resorting to editing the system registry, however it also affects all code doing lookups within that directory, so we must default it to off.
Create the handle in a way where i/o upon it can be multiplexed with other i/o on the same initiating thread of execution i.e. you can perform more than one read concurrently, without using threads. The blocking operations .read()
and .write()
may have to use a less efficient, but cancellable, blocking implementation for handles created in this way. On Microsoft Windows, this creates handles with OVERLAPPED
semantics. On POSIX, this creates handles with nonblocking semantics for non-file handles such as pipes and sockets, however for file, directory and symlink handles it does not set nonblocking, as it is non-portable.
< Using insane POSIX byte range locks
< This is an inode created with no representation on the filing system
|
inlinenoexceptinherited |
Read data from the open handle, preferentially using any i/o multiplexer set over the virtually overridable per-class implementation.
reqs | A scatter-gather and offset request. |
d | An optional deadline by which the i/o must complete, else it is cancelled. Note function may return significantly after this deadline if the i/o takes long to cancel. |
|
inlinevirtualnoexceptinherited |
EXTENSION: Changes whether this handle is append only or not.
Reimplemented in llfio_v2_xxx::process_handle.
|
inlinevirtualnoexceptinherited |
Sets the i/o multiplexer this handle will use to implement read()
, write()
and barrier()
.
Note that this call deregisters this handle from any existing i/o multiplexer, and registers it with the new i/o multiplexer. You must therefore not call it if any i/o is currently outstanding on this handle. You should also be aware that multiple dynamic memory allocations and deallocations may occur, as well as multiple syscalls (i.e. this is an expensive call, try to do it from cold code).
If the handle was not created as multiplexable, this call always fails.
Reimplemented in llfio_v2_xxx::mapped_file_handle.
|
inlinevirtualnoexcept |
Tries to lock the inode referred to by the open handle for exclusive access, returning false
if lock is currently unavailable.
Note that this may, or may not, interact with the byte range lock extensions. See unique_file_lock
for a RAII locker.
|
inlinevirtualnoexcept |
Tries to lock the inode referred to by the open handle for shared access, returning false
if lock is currently unavailable.
Note that this may, or may not, interact with the byte range lock extensions. See unique_file_lock
for a RAII locker.
|
inlinevirtualnoexcept |
EXTENSION: Unlocks a byte range previously locked.
offset | The offset to unlock. This should be an offset previously locked. |
bytes | The number of bytes to unlock. This should be a byte extent previously locked. |
Reimplemented in llfio_v2_xxx::fast_random_file_handle.
|
inlinenoexceptinherited |
Write data to the open handle, preferentially using any i/o multiplexer set over the virtually overridable per-class implementation.
truncate(newsize)
first.reqs | A scatter-gather and offset request. |
d | An optional deadline by which the i/o must complete, else it is cancelled. Note function may return significantly after this deadline if the i/o takes long to cancel. |